Εμφάνιση αναρτήσεων με ετικέτα generic set. Εμφάνιση όλων των αναρτήσεων
Εμφάνιση αναρτήσεων με ετικέτα generic set. Εμφάνιση όλων των αναρτήσεων

Κυριακή 27 Οκτωβρίου 2013

Antti Veilhate : Alain Badiou's Mistake

ALAIN BADIOU’S MISTAKE


TWO POSTULATES OF DIALECTIC MATERIALISM
 
ANTTI VEILAHTI
 
Abstract.
To accompany recent openings in category theory and phi-losophy, I discuss how Alain Badiou attempts to rephrase his dialecticphilosophy in topos-theoretic terms. Topos theory bridges the problemsemerging in set-theoretic language by a categorical approach that rein-scribes set-theoretic language in a categorical framework. Badiou’s owntopos-theoretic formalism, however, turns out to be confined only to alimited, set-theoretically bounded branch of locales. This results withhis mathematically reduced understanding of the ’postulate of materialism’ constitutive to his account. Badiou falsely assumes this postulate to be singular whereas topos theory reveals its two-sided naturewhose synthesis emerges only as a result of a (quasi-)split structure of truth. Badiou thus struggles with his own mathematical argument. Iaccomplish a correct version of his proof the sets defined over such a’transcendental algebra’form a (local) topos. Finally, I discuss thephilosophical implications Badiou’s mathematical inadequacies entail.
.
.

Κυριακή 4 Δεκεμβρίου 2011

Constructible sets

Πηγή : Scribd Badiou-Alain-Politics-A-nonexpressive-dialectics

There is a very clear mathematical example of this relation between desire and law, between different forms of existence, which is really interesting. Don’t be afraid, it’s very simple. I think mathematics is very often something which is linked to ter- ror. And I am always speaking from a non-terrorist conception of mathematics…

Suppose that we are in the theory of sets – we have a theory of the pure multiplicity – and suppose we consider one set, no matter what set; a multiplicity absolutely ordinary. The interesting thing is that with some technical means we can for- malise the idea of a subset of this set which has a clear name. So the question of the relation between existence and clear name has a possible formalisation in the field of the mathematical theory of sets. Precisely, to have a clear name is to be defined by one clear formula. It was an invention of the greatest logician of the last century, Kurt Gödel. He named that sort of subset a con- structible subset; a constructible subset of a set is a set which has a clear description. And generally speaking we name con- structible set a set which is a constructible subset of another set.

So, we have here the possibility of what I name a great law. What is a great law? A great law is a aw of laws, if you want: the law of what is really the possibility of a law. And we have a sort of math- ematical example of what is that sort of law, which is not only a law of things or subjects, but a law for laws. The great law takes the form of an axiom, the name of which is the axiom of con- structibility and which is very simple. This axiom is: all sets are constructible. You know that is a decision about existence: you decide that exist only sets that are constructible, and you have as a simple formula a simple decision about existence. All sets are constructible, that is the law of laws. And this is really a possibil- ity. You can decide that all sets are constructible. Why

Because all mathematical theorems which can be demonstrated in the general theory of sets can also be demonstrated in the field of con- structible sets. So all that is true of sets in general is in fact true for only constructible sets. So – and it’s very interesting about the question, the general question of the law – we can decide that all sets are constructible, or if you like that all multiplicity is under the law, and we lose nothing: all that is true in general is true with the restriction to constructible sets. If you lose nothing, if the field of truth is the same under the axiom of constructibility, we can say something like: the law is not a restriction of life and thinking; under the law, the liberty of living and thinking is the same. And the mathematical model of that is that we don’t lose anything when we have the affirmation that all sets are constructible, that is to say all parts of sets are constructible, that is to say finally all parts have a clear definition. And as we have a general classifica- tion of parts, a rational classification of parts; classification of society if you want – without any loss of truth. At this point there is a very interesting fact, a pure fact. Practically no mathematician admits the axiom of constructibili- ty. It’s a beautiful order, in fact, it’s a beautiful world: all is con- structible. But this beautiful order does not stimulate the desire of a mathematician, as conservative as he might be. And why? Because the desire of the mathematician is to go beyond the clear order of nomination and constructibility. The desire of the mathematician is also the desire for a mathematical monster. They want a law, certainly – difficult to do mathematics without laws – they want a law but the desire to find some new mathematical monster is beyond this law.

The mathematical example is very striking. After Gödel, the def- inition of constructible sets, and the refusal of the axiom of con- structibility by the majority of mathematicians, the question of the mathematician’s desire becomes: how can I find a non-con- structible set? And you see the difficulty, which is of great politi- cal consequence. The difficulty is, how can we find some mathe- matical object without clear description of it, without name, with- out place in the classification: how to find an object the character- istic of which is to have no name, to not be constructible, and so on. And the very complex and elegant solution was found in the sixties by Paul Cohen. He found an elegant solution to name, to identify, a set which is not constructible, which has no name, which has no place in the great classification of predicates, a set which is without specific predicate. It was a great victory of desire against law, in the field of law itself, the mathematical field. And like many things, many victories of this type, it was in the sixties. And Paul Cohen gives the nonconstructible sets a very beautiful name: generic sets. And the invention of generic sets is something in the revolutionary actions of the sixties.

Δευτέρα 31 Ιανουαρίου 2011

Πέμπτο Μάθημα Badioumathematics:Τι είναι "generic"

Μια από τις έννοιες κλειδί στα Badioumathematics  είναι η έννοια του generic. .Ο  όρος δημιουργεί μερικά μεταφραστικά προβλήματα, καθώς από τους προερχόμενους από τις ανθρωπιστικές επιστήμες μεταφράζεται ως «γενολογικός» ενώ από δε τους  μαθηματικούς ως «γένιος».  Ο ίδιος όρος  χρησιμοποιείται από την φαρμακολογία όπου έχει αποδοθεί  με τον νεολογισμό «γενόσημο». Στην φαρμακολογία λοιπόν ,αφορά τα φάρμακα που παράγονται με μόνο χαρακτηριστικό την ενεργό ουσία τους, χωρίς αναφορά σε ιδιοκτησιακά δικαιώματα της πατέντας του φαρμάκου.
Σε  όλες τις περιπτώσεις το generic είναι ένα επίθετο που προσδιορίζει κάτι και την σχέση του με το «γένος» του , η οποία, όμως , είναι η απλούστερη δυνατή, ίσα ίσα για να διατηρηθεί αυτή η σχέση γένους. Το φάρμακο είναι το πιο απλό παράδειγμα.
Ένα generic φάρμακο έχει μόνο τα χαρακτηριστικά που απαιτούνται για να είναι δραστικό, και αυτό προφανώς είναι η δραστική ουσία του. Αν η ασπιρίνη έχει ως δραστικό χαρακτηριστικό το ακετυλοσαλυκιλικό  οξύ, τότε όποιο παυσίπονο έχει μόνο αυτήν την ουσία, χωρίς άλλες αναφορές στην εμπορική ονομασία, το πακέτο, τα πνευματικά δικαιώματα, κλπ της ασπιρίνης τότε αυτό είναι generic .
Είδαμε σε προηγούμενο μάθημα πώς τα μαθηματικά του Cohen και η έννοια του forcing (εκβιασμός , παραβίαση) γίνονται κατανοητά μέσω του παραδείγματος του κλειστού δωματίου  και ποια είναι η συμβολή αυτού του μαθηματικού προβληματισμού στην θεωρία του ΑΒ.
Τα ίδια μαθηματικά του στηρίζονται στην έννοια του generic.
Το generic όμως ορίζεται με ένα διαφορετικό και πιο αυστηρό τρόπο από ότι με τα φάρμακα.
Έχοντας δει τα βασικά μαθήματα για τα σύνολα, τότε τα βήματα του Cohen είναι σχετικά απλά και κατανοητά.
Ας υποθέσουμε ότι έχουμε ένα σύνολο με άπειρα στοιχεία.Ταυτόχρονα έχουμε την δυνατότητα να δημιουργούμε υποσύνολα αυτού του συνόλου με βάση ένα απλό διατυπωμένο κριτήριο .
Αν πάρουμε το αρχικό παράδειγμα ενός άπειρου συνόλου που όμως περιέχει τα γνωστά σε εμάς στοιχεία Κώστας, Ελένη ,Ανδρέας. Τότε  ας υποθέσουμε ότι έχουμε το κριτήριο ποια στοιχεία του συνόλου έχουν Ελληνικά Ονόματα. Τότε με βάση το κριτήριο αυτό το υποσύνολο αυτό είναι προσδιορίσιμο.
Το πείραμα είναι απλό.
Προσπαθούμε να δημιουργήσουμε υποσύνολα, με βάση ένα απλό κριτήριο , το  οποίο είναι σαφές γλωσσικά και απαντάται με ένα ναι όχι
Στο παράδειγμα μας
Κριτήριο : Τα μέρη του υποσυνόλου έχουν Ελληνικά Ονόματα ναι ή όχι;
Απάντηση: Ναι το υποσύνολο (Κώστας, Ελένη,Αντρέας) έχουν ελληνικά ονόματα.
Αν πάρουμε ένα σύνολο με άπειρα στοιχεία τότε μπορούμε να φανταστούμε ότι αυτά μπορούν να προέρχονται από μια επιλογή μέσω ενός τέτοιου κριτηρίου. Δημιουργούμε άπειρα υποσύνολα με ένα τρόπο επιλογής.
Έρχεται τώρα ο mr.Cohen και αναρωτιέται.
-Υπάρχει περίπτωση να υπάρχουν υποσύνολα για τα οποία δεν μπορεί να έχει προυπάρξει κανένα γλωσσικό κριτήριο προεπιλογής;  Με άλλα λόγια
-Υπάρχουν υποσύνολα για τα οποία η γλώσσα δεν μπορεί να διατυπώσει ένα νόμο, ένα τρόπο «συλλογής» των στοιχείων τους;
Τότε βασιζόμενος σε αυστηρά μαθηματικά και σεβόμενος όλους τους κανόνες της λογικής, μας αποκαλύπτει πως ναι   τέτοια υποσύνολα υπάρχουν στο μαθηματικό σύμπαν. Αυτά τα υποσύνολα ονομάζονται generic.
Αν δούμε το παράδειγμα των φαρμάκων, τα υποσύνολα αυτά σύμφωνα με το κριτήριο του Cohen ΔΕΝ είναι generic γιατί έχουν την ελάχιστη σχέση με το αρχικό σύνολο τους, αλλά αυτή η σχέση έχει τουλάχιστον ένα γλωσσικό προσδιορισμό.
Στα μαθηματικά λοιπόν τα generics σύνολα  υπάρχουν . Σύμφωνα όμως με την οντολογία του ΑΒ ότι υπάρχει στα μαθηματικά υπάρχει και στην πραγματικότητα.
Το συμπέρασμα είναι ότι η γλώσσα δεν είναι δυνατόν να προσδιορίσει κάτι που είναι υπαρκτό, και διέπεται από νόμους αυστηρούς νόμους λογικής. Η αδυναμία της γλώσσας δεν είναι αγνωστικισμός. Τα generic υποσύνολα υπάρχουν , για αυτό είμαστε σίγουροι !, η απόδειξη του Cohen είναι στέρεα , άρα έχουμε μια λογική συνεκτική απόδειξη ότι η γλώσσα δεν μπορεί να ορίσει εκ των προτέρων  όλη την  πραγματικότητα.
Τα generics σύνολα του Cohen είναι μια άλλη απόδειξη , ότι η Αλήθεια και το Συμβάν του ΑΒ, που προέρχονται αναδύονται από την απτή πραγματικότητα, δεν μπορούν να περιγραφούν εκ των προτέρων με την γλώσσα, αλλά αυτό δεν είναι παραδοξότητα, δεν είναι αδυναμία, δεν είναι αγνωστικισμός. Τα generics  σύνολα υπάρχουν   άρα γνωρίζουμε με τρόπο απλό λογικό, μαθηματικό, αποδεδειγμένο, τους περιορισμούς της γλώσσας. Ταυτόχρονα  μέσω των generics, όπως και με την έννοια του forcing , δηλαδή μέσω μιας μαθηματικής γλώσσας και μέσω αυστηρών ορισμών μπορούμε να προσπελάσουμε κάτι που είναι εκτός μιας απλής μηχανιστικής ανάλυσης, να περιγράψουμε αυστηρά το αναπάντεχο, ριζικά νέο, ιστορικό Συμβάν και την Αλήθεια που αναδύεται μαζί του.