Μια από τις έννοιες κλειδί στα Badioumathematics είναι η έννοια του generic. .Ο όρος δημιουργεί μερικά μεταφραστικά προβλήματα, καθώς από τους προερχόμενους από τις ανθρωπιστικές επιστήμες μεταφράζεται ως «γενολογικός» ενώ από δε τους μαθηματικούς ως «γένιος». Ο ίδιος όρος χρησιμοποιείται από την φαρμακολογία όπου έχει αποδοθεί με τον νεολογισμό «γενόσημο». Στην φαρμακολογία λοιπόν ,αφορά τα φάρμακα που παράγονται με μόνο χαρακτηριστικό την ενεργό ουσία τους, χωρίς αναφορά σε ιδιοκτησιακά δικαιώματα της πατέντας του φαρμάκου.
Σε όλες τις περιπτώσεις το generic είναι ένα επίθετο που προσδιορίζει κάτι και την σχέση του με το «γένος» του , η οποία, όμως , είναι η απλούστερη δυνατή, ίσα ίσα για να διατηρηθεί αυτή η σχέση γένους. Το φάρμακο είναι το πιο απλό παράδειγμα.
Ένα generic φάρμακο έχει μόνο τα χαρακτηριστικά που απαιτούνται για να είναι δραστικό, και αυτό προφανώς είναι η δραστική ουσία του. Αν η ασπιρίνη έχει ως δραστικό χαρακτηριστικό το ακετυλοσαλυκιλικό οξύ, τότε όποιο παυσίπονο έχει μόνο αυτήν την ουσία, χωρίς άλλες αναφορές στην εμπορική ονομασία, το πακέτο, τα πνευματικά δικαιώματα, κλπ της ασπιρίνης τότε αυτό είναι generic .
Είδαμε σε προηγούμενο μάθημα πώς τα μαθηματικά του Cohen και η έννοια του forcing (εκβιασμός , παραβίαση) γίνονται κατανοητά μέσω του παραδείγματος του κλειστού δωματίου και ποια είναι η συμβολή αυτού του μαθηματικού προβληματισμού στην θεωρία του ΑΒ.
Τα ίδια μαθηματικά του στηρίζονται στην έννοια του generic.
Το generic όμως ορίζεται με ένα διαφορετικό και πιο αυστηρό τρόπο από ότι με τα φάρμακα.
Έχοντας δει τα βασικά μαθήματα για τα σύνολα, τότε τα βήματα του Cohen είναι σχετικά απλά και κατανοητά.
Ας υποθέσουμε ότι έχουμε ένα σύνολο με άπειρα στοιχεία.Ταυτόχρονα έχουμε την δυνατότητα να δημιουργούμε υποσύνολα αυτού του συνόλου με βάση ένα απλό διατυπωμένο κριτήριο .
Αν πάρουμε το αρχικό παράδειγμα ενός άπειρου συνόλου που όμως περιέχει τα γνωστά σε εμάς στοιχεία Κώστας, Ελένη ,Ανδρέας. Τότε ας υποθέσουμε ότι έχουμε το κριτήριο ποια στοιχεία του συνόλου έχουν Ελληνικά Ονόματα. Τότε με βάση το κριτήριο αυτό το υποσύνολο αυτό είναι προσδιορίσιμο.
Το πείραμα είναι απλό.
Προσπαθούμε να δημιουργήσουμε υποσύνολα, με βάση ένα απλό κριτήριο , το οποίο είναι σαφές γλωσσικά και απαντάται με ένα ναι όχι
Στο παράδειγμα μας
Κριτήριο : Τα μέρη του υποσυνόλου έχουν Ελληνικά Ονόματα ναι ή όχι;
Απάντηση: Ναι το υποσύνολο (Κώστας, Ελένη,Αντρέας) έχουν ελληνικά ονόματα.
Αν πάρουμε ένα σύνολο με άπειρα στοιχεία τότε μπορούμε να φανταστούμε ότι αυτά μπορούν να προέρχονται από μια επιλογή μέσω ενός τέτοιου κριτηρίου. Δημιουργούμε άπειρα υποσύνολα με ένα τρόπο επιλογής.
Έρχεται τώρα ο mr.Cohen και αναρωτιέται.
-Υπάρχει περίπτωση να υπάρχουν υποσύνολα για τα οποία δεν μπορεί να έχει προυπάρξει κανένα γλωσσικό κριτήριο προεπιλογής; Με άλλα λόγια
-Υπάρχουν υποσύνολα για τα οποία η γλώσσα δεν μπορεί να διατυπώσει ένα νόμο, ένα τρόπο «συλλογής» των στοιχείων τους;
Τότε βασιζόμενος σε αυστηρά μαθηματικά και σεβόμενος όλους τους κανόνες της λογικής, μας αποκαλύπτει πως ναι τέτοια υποσύνολα υπάρχουν στο μαθηματικό σύμπαν. Αυτά τα υποσύνολα ονομάζονται generic.
Αν δούμε το παράδειγμα των φαρμάκων, τα υποσύνολα αυτά σύμφωνα με το κριτήριο του Cohen ΔΕΝ είναι generic γιατί έχουν την ελάχιστη σχέση με το αρχικό σύνολο τους, αλλά αυτή η σχέση έχει τουλάχιστον ένα γλωσσικό προσδιορισμό.
Στα μαθηματικά λοιπόν τα generics σύνολα υπάρχουν . Σύμφωνα όμως με την οντολογία του ΑΒ ότι υπάρχει στα μαθηματικά υπάρχει και στην πραγματικότητα.
Το συμπέρασμα είναι ότι η γλώσσα δεν είναι δυνατόν να προσδιορίσει κάτι που είναι υπαρκτό, και διέπεται από νόμους αυστηρούς νόμους λογικής. Η αδυναμία της γλώσσας δεν είναι αγνωστικισμός. Τα generic υποσύνολα υπάρχουν , για αυτό είμαστε σίγουροι !, η απόδειξη του Cohen είναι στέρεα , άρα έχουμε μια λογική συνεκτική απόδειξη ότι η γλώσσα δεν μπορεί να ορίσει εκ των προτέρων όλη την πραγματικότητα.
Τα generics σύνολα του Cohen είναι μια άλλη απόδειξη , ότι η Αλήθεια και το Συμβάν του ΑΒ, που προέρχονται αναδύονται από την απτή πραγματικότητα, δεν μπορούν να περιγραφούν εκ των προτέρων με την γλώσσα, αλλά αυτό δεν είναι παραδοξότητα, δεν είναι αδυναμία, δεν είναι αγνωστικισμός. Τα generics σύνολα υπάρχουν άρα γνωρίζουμε με τρόπο απλό λογικό, μαθηματικό, αποδεδειγμένο, τους περιορισμούς της γλώσσας. Ταυτόχρονα μέσω των generics, όπως και με την έννοια του forcing , δηλαδή μέσω μιας μαθηματικής γλώσσας και μέσω αυστηρών ορισμών μπορούμε να προσπελάσουμε κάτι που είναι εκτός μιας απλής μηχανιστικής ανάλυσης, να περιγράψουμε αυστηρά το αναπάντεχο, ριζικά νέο, ιστορικό Συμβάν και την Αλήθεια που αναδύεται μαζί του.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου