Εμφάνιση αναρτήσεων με ετικέτα category theory. Εμφάνιση όλων των αναρτήσεων
Εμφάνιση αναρτήσεων με ετικέτα category theory. Εμφάνιση όλων των αναρτήσεων

Κυριακή 27 Οκτωβρίου 2013

Antti Veilhate : Alain Badiou's Mistake

ALAIN BADIOU’S MISTAKE


TWO POSTULATES OF DIALECTIC MATERIALISM
 
ANTTI VEILAHTI
 
Abstract.
To accompany recent openings in category theory and phi-losophy, I discuss how Alain Badiou attempts to rephrase his dialecticphilosophy in topos-theoretic terms. Topos theory bridges the problemsemerging in set-theoretic language by a categorical approach that rein-scribes set-theoretic language in a categorical framework. Badiou’s owntopos-theoretic formalism, however, turns out to be confined only to alimited, set-theoretically bounded branch of locales. This results withhis mathematically reduced understanding of the ’postulate of materialism’ constitutive to his account. Badiou falsely assumes this postulate to be singular whereas topos theory reveals its two-sided naturewhose synthesis emerges only as a result of a (quasi-)split structure of truth. Badiou thus struggles with his own mathematical argument. Iaccomplish a correct version of his proof the sets defined over such a’transcendental algebra’form a (local) topos. Finally, I discuss thephilosophical implications Badiou’s mathematical inadequacies entail.
.
.

Πέμπτη 17 Ιανουαρίου 2013

Heroico Desembarazo:H θεωρία των κατηγοριών και η κενογραμματική

Το υπερδραστήριο Heroico Desembarazo (πηγή) συνεχίζει την διερεύνιση για τις δυνατότητες που έχουν μαθηματικές θεωρίες για να διατυπώσουν με ένα συνεπή τρόπο διαδικασίες αλλαγών και ρήξεων σε ένα ανώτερο επίπεδο αφαίρεσης
Να σημειωθεί ότι ο Badiou στο Logic of Worlds προκρίνει τη θεωρία των κατηγορίων ως μια γλώσσα με τις ισχυρότερες δυνατότητες περιγραφής των φαινομένων των αλλαγών

Η πλήρης ανάρτηση εδώ:

Posted on by
http://karydis.ionio.gr/hdml.gr/pdfs/conferences/102.pdf
Σύμφωνα με τον κ. Καρύδη, η θεωρία των κατηγοριών μπορεί να λειτουργήσει ως ενοποιητική, καθολική γλώσσα γιατί διαπραγματεύεται συγκεκριμένη δομή με το να τη θεωρεί ως δεδομένη και να τη γενικεύει (σσ 293). Εστιάζει στις δυναμικές διαδικασίες ώστε από τη μία να είναι αντιπλατωνική γιατί εξαφανίζει τα αντικείμενα αλλά από την άλλη πλατωνική γιατί υπάρχουν μαθηματικές οντότητες, οι διαδικασίες (σσ 295).
Παράλληλα, η κενογραμματική,
http://dml.cz/bitstream/handle/10338.dmlcz/702156/WSAA_13-1985-2_14.pdf
“A kenogram is not a usual element of a usual set, like in set theory. A kenogram has no
fixed identity. The only property it has, is that it is distinguishable from another kenogram and that it differs or differs not as a symbol from another. Kenograms only ‘exist’ on a structure together with a kenogrammatic equivalence relation. Or like Gunther defined: ‘A kenogram is an empty place which merely indicate structure which may or may not be occupied by symbols.’. The terminus ‘kenogram’ is derived from Greek Kevoo (kenos). The inexhaustible reservoir ®n of at most n different symbols, is a new kind of set — a kenogrammatic set.”
E The proemial relation — a kenogrammatic relation When Gunther (1972) published ‘Cognition and Volition’ [3], only few people understood, that the in this contribution described proemial relation was a mile stone in qualitative mathematics. The first quali­
tative relation was operationalized. This new type of relation does not interlock different base rela­tions, an order relation and an exchange relation, but also simultaneously operations of constants, vari­ables and qualitative different relations. The proemial relation textured now in a harmonic way aspects of (many-valued) logic, system theory, cybernetics, dialectic and qalitative Mathematics. “
Παράδειγμα στη βιολογία:
For biological model theory you need without doubt in any case:
* cycles (symbolisation of life)
* order relations (order in nature)
* exchange relations (for movements)
* distributed contextures — Guntherian poly-contexturality (a living being has its own subjective identity, but can only live, if there are other subjects with an own contexture).
The proemial relation of Gotthard Gunther has all these properties, if they are used in a process (e.g. by acting). And so it is little wonder, that the first steps to come to
* self-reference * self-organization * super-additivity * multicentred designs of biological models * ultra-stability of systems are made.
H κενογραμματική φαίνεται να επεκτείνει την θεωρία των κατηγοριών. Σε συνδυασμό με το προηγούμενο ποστ όπου η θεωρία των κατηγοριών μπορεί να παράγει χιμαιρικές οντότητες, μπορούμε να οργανώσουμε μία τυπολογία για μία οντολογία καθολικοτήτων που εκφράζονται σε ατομικά συστήματα αυτοαναφορικά που αυτοοργανώνονται και αλληλοδρούν δημιουργώντας νέες οντότητες.

Πέμπτη 30 Αυγούστου 2012

Is Badiou's Ontology Consistent With Materialism?

Πηγή:Larval Subjects


21 AUGUST 2006

Is Badiou's Ontology Consistent With Materialism?
Since last week I've been largely out of commission cognitively due to health issues, but I'm slowly regaining the ability to think. During this time, I happened to come across a brief statement by Badiou, explaining why he considers himself a materialist. Here my remarks will be less than elegant, though I hope to localize a problem that seems to emerge with regard to Badiou's ontology, and a place where it might become possible to think questioningly with Badiou (in tandem with Deleuze and what might motivate a Deleuzian ontology).

In an interview accompanying Badiou's Ethics: An Essay on the Understanding of Evil, Hallward asks Badiou to clarify the relation between his mathematical ontology and the nature of material reality. Despite my great love of mathematics and my tendency to advocate some form of Platonic realism where the ontological status of mathematical entities is concerned, I think this question naturally emerges insofar as mathematical entities are often thought as idealities and possibilities, independent of the actuality characterizing the material world. Consequently, there seems to be something of a gulf or chasm between the infinite possibilities of the mathematical world and the actualities characterizing this world. In response, Badiou remarks that,
If we accept that there exists a situation in which what is at stake for thought as being-as-being [viz., ontology]-- and for me, this is simply one situation of thought, among others --then I would say that this situation is the situation defined by mathematics. Mathematics, because if we abstract all presentative predicates little by little, we are left with the multiple, pure and simple. The "that which is presented" can be absolutely anything. Pure presentation as such, abstracting all reference to "that which" --which is to say, then, being-as-being, being as pure multiplicity --can be thought only through pure mathematics.

To the extent that we abstract the "that which is presented" in the diversity of situations, to consider the presentation of presentation itself-- that is to say, in the end, pure multiplicity-- then the real and the possible are rendered necessarily indistinct. What I call ontology is the generic form of presentation as such, considered independently of the question as to whether what is presented is real or possible... Are they real, do they exist somewhere, are they merely possible, are they linguistic products...? I think we have to abandon these questions simply because it is of the essence of ontology, as I conceive it, to be beneath the distinction of the real and the possible. What we will necessarily be left with is a science of the multiple in general, such that the question of knowing what is effectively presented in a particular situation remains suspended. A contrario, every time we examine something that is presented, from the strict point of view of its objective presentation, we will have a horizon of mathematicity, which is, in my opinion, the only thing that can be clear. In the final analysis, physics-- that is to say, the theory of matter --is mathematical. (Ethics: An Essay on the Understanding of Evil, pgs. 127-128, italics mine)
A moment later Badiou reminds us of what ontology is, remarking that, "all of this simply confirms a very old and somewhat inevitable ontological programme: that ontology always gathers up what remains to thought once we abandon the predicative, particular determination of 'that which is presented'" (129). Ontology, then, is what remains once we subtract all other predicates characterizing an existent or an entity. According to Badiou, all that remains after such an operation of subtraction occurs is pure multiplicity or multiplicity qua multiplicity sans any other predicates or qualities:
Now, the existent qua existent is absolutely unbound [I read this as "un-related"]. This is a fundamental characteristic of the pure manifold as it is thought in Set theory. There are only multiplicities and nothing else. None of them on their own is connected to another. In Set Theory even functions have to be thought as pure multiplicities or manifolds. This is why we identify them by their graph [I'm not sure what he's getting at here with his reference to the graph of a function]. The "beingness" of the existent does not presuppose anything else than its immanent composition, that is, that it might be a manifold of manifolds. Strictly speaking, this excludes the possibility that there might be a being of the relation. When thought as such, and therefore purely generically, Being is subtracted from any connection. (Briefings on Existence: A Short Treatise on Transitory Ontology, "Being and Appearing", 162. This essay can also be found in Theoretical Writings)
The key sentence in this passage is "manifold of manifolds", which should be translated as "multiplicities of multiplicities". In thinking Being as manifold of manifolds Badiou is effectively claiming that there are no ultimate or irreducible terms of which sets would be composed, but only endless multiplicities without ultimate identities, and that these manifolds are unrelated or unconnected to one another. As such, Badiou's ontology is an ontology of infinite dissemination without One or an overarching unity at the level of either the whole or the part. Now I take it that the great merit of Badiou's mathematical thesis is two-fold:
Badiou's ontology effectively allows us to escape any epistemological orientation in ontology, by sidestepping any questions of how it is possible for a subject to relate to being. That is, we need raise no questions of how a mind is able to know or represent being. This point might be obscure to those who have no background in philosophy of mathematics; however, ever since Frege and Husserl, questions of the psychology through which mathematics is known have been staunchly excluded from the thinking of the mathematical qua mathematical. Those unfamiliar with these arguments and the manner in which they trenchantly depose any psychologism would do well to refer to Frege's Foundations of Arithmetic. This is why it's so important to Badiou that ontology evade the distinction between actuality and possibility (as it must not be a matter of mind representing reality, but of a "common being" to possibility and actuality). It is also one reason that Badiou's ontology diverges radically from Zizek's Hegelian orientation. The consequences of this move are far reaching. In one fell swoop, Badiou is able to escape all questions revolving around the subject and anthropology. If mathematics truly is ontology, and if mathematics is independent of questions of knowledge, then all questions about differing subjective perspective on reality, different cultural perspectives on reality, etc., fall to the wayside as interesting psychological, anthropological, and sociological speculations, but speculations that are quite irrelevant to ontological researches. In short, ontology and philosophy no longer need concern themselves with cultural studies, linguistics, or the social sciences. This is what it means, for Badiou, to say that math inscribes the real.

In a closely related vein, Badiou's thesis allows us to depart, once and for all, from Heidegger's endless preparations for properly posing the question of being. There is no need to engage in an elaborate hermeneutic of Dasein as that being that is "ontic-ontological" and who has a pre-ontological understanding of being, as the being of being is exhausted in its mathematicity.
To my thinking, these consequences cannot but come as a breath of fresh air to philosophy insofar as it has increasingly come to be dominated by cultural studies, rhetorical analysis, and pseudo-pious phenomenological discourses.

However, I wonder nonetheless whether Badiou hasn't moved a bit too quickly. Badiou's thesis regarding materialism seems to be that insofar as science always approaches matter mathematically, a mathematical ontology is necessarily a materialist ontology:
...it [the thesis that mathematics = ontology] is a fully materialist thesis, because everyone can see that the investigation of matter, the very concept of matter, is a concept whose history shows it to be at the edge of mathematicity... 'Matter' would simply be, immediately after being, the most general possible name of the presented (of 'what is presented'). Being-as-being would be that point of indistinction between the possible and the real that only mathematics apprehends in the exploration of the general configuration of the purely multiple. Matter, in the sense in which it is at stake in physics, is matter as enveloping any particular presentation--and I am a materialist in the sense that I think that any presentation is material. (Ethics: An Essay on the Understanding of Evil, 130, italics mine)
What seems to be missing in Badiou's account of materialism is precisely any discussion of this "concept at the edge of mathematicity". I have highlighted these passages on how being-qua-being is the point of indistinction between the possible and the real to indicate that the moment we enter the realm of the material, we are no longer dealing with something merely possible, but rather with something actual. That is, something has been added to what we're talking about, what we're investigating, that isn't strictly mathematical. Although mathematics is certainly an essential dimension of physics or any science (I would accept Kant's thesis that mathematization is a necessary condition of scientificity), the object of any particular science is an object that cannot itself be mathematically deduced.

Doesn't this edge of mathematicity, this element that is enveloped by mathematicity, itself have some claim to being? Hallward hits the nail on the head when he responds to Badiou's elaboration of materialism, by remarking that, "It seems, however, that your most basic concept, the concept of a situation, oscillates somewhat between an essentially mathematical order and what appears to be a no less essentially eclectic order, combining heterogeneous elements of actuality" (129). The problem as I see it is that unlike being-qua-being, a situation (what Badiou now calls a "world"), does not straddle the distinction between the possible and the real. A situation is real, it is actual, it is this situation and no other.

It thus seems to me that for Badiou there is a tremendous gap between ontology as the "presentation of presentation" or pure multiplicity "without connection", and the ordered situations of the world. One might respond by arguing that ontology is not in the business of explaining situations as it only studies pure multiplicities, not "consistent multiplicities". However, Badiou himself says otherwise:
What links a being to the constraint of a local or situated exposure of its manifold-being is something we call this existent's "appearing." It is the existent's being to appear insofar as Being as a whole does not exist. Every being is being-there. This is the essence of appearing. Appearing is the site, the "there" of the multiple-existent insofar as it is thought in its being. Appearing in no way depends on space or time, or more generally on a transcendental field. It does not depend on a Subject whose constitution would be presupposed. The manifold-being does not appear for a subject. Instead, it is more in line with the essence of the existent to appear. As soon as it falls short of being localized according to the whole, it has to assert its manifold-being from the point of view of a non-whole, that is, of another particular existent determining the being of the there of being-there [incidentally, Hegel already conceives appearing as appearing to another existent or Relation in the "Doctrine of Essence", Science of Logic].

Appearing is an intrinsic determination of Being. The localization of the existent, which is its appearing, involves another particular being: its site or situation. This is why it can be seen immediately that appearing is as such what connects or reconnects an existent or its site. The essence of appearing is the relation. (Briefings on Existence, pg. 162)
I confess that I find these remarks exhilerating, though I am unable to understand Badiou's thesis or the logical entailment necessitating that "because the whole is not, the existent must appear. " It seems to me that there is a fundamental ontological axiom here that is currently the is a central theme of a good deal of contemporary theory (Deleuze's thesis that the Whole is not giveable in Cinema 1 and that this is a condition for the given, Zizek's thesis that the One is not, Lacan's thesis that the world does not exist, etc. One of my central questions is that of how to understand the relation between the in-existence of the Whole (not simply that we cannot know the whole, but that the whole does not exist --and the givenness of the given. I am not sure why this question strikes me as so important, but there's something there. Now, when Badiou glosses category theory in an earlier essay "Group, Category, Subject", he largely describes my own ontological project:
In category theory, the initial data are particularly meager. We merely dispose of undifferentiated objects (in fact, simple letters deprived of any interiority) and of 'arrows' (or morphisms) 'going' from one object to another. Basically, the only material we have is oriented relations. A linkage (the arrow) has its source in one object and target in another. Granted, the aim is ultimately for the 'objects' to become mathematical structures and the 'arrows' the connection between these structures. But the purely logical initial grasping renders the determination of an object's sense entirely extrinsic or positional. It all depends on what we can learn from the arrows going toward that object (whose object is the target), or of those coming from it (whose objects is the source). An object is but the marking of a network of actions, a cluster of connections. Relation precedes Being. This is why at this point of our inquiry we have established ourselves in logic, and not ontology. It is not a determined universe of thought we are formalizing, but the formal possibility of a universe" (Briefings on Existence, "Group, Category, Subject", 144).
From my perspective, this is the place to begin ontologically, as I see no way that can account for the emergence of Relation on the basis of pure, unconnected multiplicity as described by Badiou. I am not certain why Badiou refers to this as a logic (generally I'm fuzzy on his conception of logic overall and why he is so hostile to placing math under logic), nor am I sure why he refers to this as the articulation of a possible universe, rather than a determined universe. However, when Badiou suggests that Relation precedes being, and proposes that we conceive entities as "networks of action", "clusters of connections", "bundles of relations", I think this is the right direction to move in ontologically. It is this move towards conceiving beings as activities, as networks, as doings, that allows us to do away with substance ontology. This, then, is the central difficulty. One the one hand, Badiou wishes to claim that ontology is indifferent to the distinction between the possible and the real. Yet on the other hand, Badiou wishes to argue that it belongs to the essence of Being, that it is intrinsic to being, to appear. How can this be? How can we simultaneously affirm both of these theses without undermining the thesis that ontology is indifferent to the distinction between the possible and the real?

Could it be that this is the real source of Badiou's hostility to Deleuze? It will be recalled that Deleuze defines his transcendental empiricism as that ontology that articulates the conditions of real being, and not all possible being. In developing this ontology Deleuze, following Bergson, advances a substantial critique of the category of possibility, arguing that the dialectic between the possible and the real is unable to give any account of how the real is realized insofar as the real in no way differs from the possible (Kant's famous critique of the ontological proof for the existence of God, wherein he argues that "existence is not a real predicate"). That is, accounts of realization are unable to explain what the real contributes to being. It seems to me that Badiou finds himself in a very similar position and that for this reason it is difficult to identify his ontology as being genuinely materialist.

Τρίτη 11 Ιανουαρίου 2011

Απλά μαθήματα Badioumathematics για αρχάριους και μη μαθηματικούς.Μάθημα δεύτερο

Η θεμελιώδης διάκριση του "ανήκω" και "εμπεριέχομαι"
Είδαμε στο προηγούμενο μάθημα πως είναι δυνατόν να αντιλαμβανόμαστε τον κόσμο ως «συλλογές». Αυτό αφορά τα πάντα , δηλαδή ότι μπορεί να διανοηθούμε και να σκεφτούμε και να έχουμε ως εμπειρία.
Είδαμε και το παράδειγμα της συλλογής με στοιχεία Κώστας Ελένη Ανδρέας
Είδαμε και την μαγική ιδιότητα των συλλογών να έχουν πάντα και παντού τον αριθμό των στοιχείων μικρότερο από τον αριθμό των υποσυνόλων και τέλος σημειώσαμε ότι αυτή η διαφορά έχει μια βαθύτερη σημασία. Γιατί είναι άλλη η σχέση των στοιχείων με το σύνολο και άλλη η σχέση των υποσυνόλων με το σύνολο.
Τα στοιχεία «ανήκουν» σε σύνολα τα υποσύνολα «εμπεριέχονται»
Αυτήν την διαφορά του «να ανήκεις» και «να εμπεριέχεσαι» πρέπει να δούμε καλύτερα, γιατί η κατανόηση της, μας οδηγεί σύμφωνα με τα BMCS σε μερικά ενδιαφέροντα πολιτικά αποτελέσματα. Αλλά ταυτόχρονα είναι μια  θεμελιώδης διαφορά στην θεωρία των συνόλων.
Βέβαια στην γλώσσα της καθημερινότητας φαίνεται το να «ανήκω» κάπου και να «περιέχομαι» κάπου να είναι σχεδόν ταυτόσημα. Προσοχή όμως στα BMCS  έχουν θεμελιακή διαφορά, τόση όση η διαφορά πρόσθεσης αφαίρεσης , ή πολλαπλασιασμού διαίρεσης. Φαίνεται τόσο παράξενο αλλά νομίζω ότι θα το ξεκαθαρίσουμε με ένα απλό παράδειγμα.
Σήμερα το πρωί λοιπόν πάς στο σούπερ μάρκετ
Παίρνεις ένα καλάθι και το γεμίζεις με τρόφιμα. Κάθε φορά που βάζεις ένα τρόφιμο στο καλάθι το μετράς από μέσα σου, το θυμάσαι . Στο τέλος της διαδρομής έχει μια συλλογή από τρόφιμα. Το κάθε τρόφιμο ανήκει στην συλλογή αυτή.
 Όταν πας στο ταμείο τότε ο ταμίας παίρνει ένα ένα τρόφιμο ,ή δυο δύο, ανακατεμένα ανεξάρτητα από την σειρά που εσύ τα αγόρασες, και τα σκανάρει για να βγάλει τον λογαριασμό.
Τα τρόφιμα που είναι στοιχεία της συλλογής σου, που «ανήκουν»  στην συλλογή για τον ταμία είναι κάτι παραπάνω. Ο ταμίας διαχειρίζεται την ίδια συλλογή , την καταγράφει, την κωδικοποιεί με ένα άλλο τρόπο από ότι εσύ. Για τον ταμία , για την συγκεκριμένη δουλειά τα τρόφιμα είναι «περιεχόμενα» της συλλογής.
Δηλαδή «περιεχόμενο»  γίνεται ένα στοιχείο μιας συλλογής  όταν το διαχειριζόμαστε ως μονάδα, αφού βέβαια από πριν, το έχουμε καταστήσει μέλος της συλλογής.
 Όταν κάτι ανήκει σε μια συλλογή έχει ήδη μετρηθεί, αλλά όταν κάτι είναι περιεχόμενο μιας συλλογής γίνεται αντικείμενο μιας επιμέτρησης, μιας διαχείρισης της αρχικής μέτρησης.
Το περίεργο είναι ότι στα μάτια του ταμία, κατά την διάρκεια του σκαναρίσματος , δημιουργείται μια συλλογή με στοιχεία που «ανήκουν», δηλαδή γίνεται «η συλλογή των τροφίμων του πελάτη τάδε που σκανάρω τώρα» .Αυτό σημαίνει ότι κάθε συλλογή ανά πάσα στιγμή αποτελείται από στοιχεία και υποσύνολα, αλλά αυτό εξαρτάται από την διαδικασία που έχουμε.
Για να είναι κάπως καθαρό ας υποθέσουμε ότι να «ανήκεις» προηγείται του να είσαι «περιεχόμενο» χρονικά.
Στην καθημερινότητα όμως κυρίως διαχειριζόμαστε, επιμετρούμε, πράγματα ως περιεχόμενα συλλογών  και μόνο θεωρητικά σκεφτόμαστε για την έννοια του «ανήκω» που προηγείται. Ε οι αυστηροί μαθηματικοί της θεωρίας των συνόλων έχουν αποδεχθεί ένα αξίωμα, δηλαδή μια αναπόδεικτη αλήθεια που μας χρειάζεται για να φτιάξουμε το μαθηματικό οικοδόμημα, και το αξίωμα αυτό μας λέει. Ότι ευρίσκεται στην εμπειρία σου ως περιεχόμενο μιας συλλογής , αναγκαστικά «ανήκει» στην συλλογή.
Ας το δούμε με ένα άλλο παράδειγμα
Κοιτάς στο παράθυρο και βλέπεις όσα αυτοκίνητα περνάνε από μπροστά σου για πέντε λεπτά. Τότε σχηματίζεις την συλλογή «τα αυτοκίνητα που βλέπω στο διάστημα 9:55-10::00 πμ» Τα αυτοκίνητα αυτά «ανήκουν» στην συλλογή σου
Δεν ξέρεις όμως ότι στην γωνία του σπιτιού σου υπάρχει η τροχαία που ελέγχει αυτοκίνητα  ακριβώς την ίδια ώρα 9:55-10:00 .
Τα ίδια αυτοκίνητα που μέτραγες υφίστανται έλεγχο από την τροχαία.
Η τροχαία ελέγχοντας τα ίδια αυτοκίνητα κάνει και αυτή μια συλλογή αυτοκινήτων δηλαδή την συλλογή «αυτοκίνητα που ελέγχω μεταξύ 09:55-10:00» . Για την τροχαία τα αυτοκίνητα «ανήκουν»  στην συλλογή της, αλλά τα ίδια αυτοκίνητα πλέον είναι και «περιεχόμενα» της συλλογής σου τα οποία διαχειρίζεται και ελέγχει η τροχαία.
Με ένα μαγικό τρόπο τα ίδια αυτοκίνητα «ανήκουν» σε δύο διαφορετικές ίσες συλλογές,(την δική σου και της αστυνομίας)  αλλά αν  σκεφτούμε την αλληλουχία, η τροχαία ελέγχει «τα περιεχόμενα» της συλλογής σου, και αν υποθέσουμε ότι κόβει κλήσεις σε όλους τότε διαχειρίζεται και τα «περιεχόμενα» της δικής της συλλογής.
Η κατάταξη του να «ανήκεις» και να είσαι «περιεχόμενο» αλλάζει διαρκώς για τα ίδια πράγματα, αλλά το να είσαι «περιεχόμενο» προϋποθέτει ότι «ανήκεις» και όταν κάποιος διαχειρίζεται επιμετρά στοιχεία συλλογών τότε μιλάμε για «περιεχόμενο»
Αν αυτό είναι καθαρό τότε μπορούμε να μιλήσουμε για μια ευρεσιτεχνία του ΑΒ. Ο τύπος αρχίζει να σκέφτεται για την κοινωνία και την πολιτική όχι όπως ένας τυπικός φιλόσοφος, αλλά χρησιμοποιώντας το περίεργο αλλά τελικά σαφές (ελπίζω…) κριτήριο του «να ανήκω» ή του «να είμαι περιεχόμενο»
Αλλά αυτά στο επόμενο μάθημα BMCS.  

Παρασκευή 7 Ιανουαρίου 2011

Peter Hallward : Badiou a subject of Thruth.Τα κεφαλαια 13,14 και Appendix

Στο θεμελιακό βιβλίο του Peter Hallward "Badiou a subjetc to Truth" υπάρχει η πιο εκτεταμένη παρουσίαση των μαθηματικών του ΑΒ.
Το Google Books επιλέγει να δημοσιοποιεί τα λιγότερο "ελκυστικά" αποσπάσματα, και αυτή η τακτική προσέφερα κατι ενδιαφέρον
Από όλο το βιβλίο επέλεξαν να δημιοσιεύσουν αυτούσια τα κεφάλια 13 14 και Appendix που είναι η "ουσία" των Badioumathematics
Η θεωρία συνόλων, η θεωρία κατηγοριών, η αξία των generics του Cohen, παρουσιάζονται απλά και κατανοητά.

Ολο το απόσπασμα εδώ

Τρίτη 4 Ιανουαρίου 2011

Θεωρία Κατηγοριών: Σημειώσεις του Χ.Σκιαδά

Η Θεωρία Κατηγοριών και η θέση της στα σύγχρονα Μαθηματικά
Η Θεωρία Κατηγοριών είναι μια σύγχρονη μαθηματική θεωρία που αναπτύχθηκε τα τελευταία πενήντα χρόνια με σκοπό να λύσει προβλήματα άλλων θεωριών ή να θέσει κάποια συμπεράσματά τους σε ένα γενικότερο πλαίσιο. Ξεκίνησε λίγο πολύ σαν μια γλώσσα για τα Μαθηματικά, αλλά σύντομα πήρε το δρόμο της σαν μια Μαθηματική θεωρία.
Αλλά τι είναι τελικά η Θεωρία Κατηγοριών; Με απλά λόγια είναι η θεωρία που ασχολείται με ιδιότητες των μορφισμών (των “καλών” απεικονίσεων) κάθε άλλης μαθηματικής θεωρίας. Ας προσπαθήσουμε να γίνουμε πιο συγκεκριμένοι. Καταρχήν έχουμε τα σύνολα και τις απεικονίσεις μεταξύ τους. Αν όμως θεωρήσουμε σύνολα με κάποια συγκεκριμένη δομή (για παράδειγμα διανυσματικοί χώροι ή τοπολογικοί χώροι), τότε δεν μας ενδιαφέρουν όλες οι απεικονίσεις μεταξύ των συνόλων, αλλά μόνο αυτές που “σεβονται”, που διατηρούν τη δεδομένη δομή (για παράδειγμα οι γραμμικές απεικονίσεις ή οι συνεχείς απεικονίσεις αντίστοιχα). Η Θεωρία Κατηγοριών μελετά ακριβώς αυτή τη συλλογή όλων των αντικειμένων με μια συγκεκριμένη δομή και των απεικονίσεων που διατηρούν τη δομή αυτή, των λεγόμενων μορφισμών. Όλη αυτή η συλλογή (μαζί με την οριζόμενη φυσιολογικά πράξη σύνθεσης) καλείται μια κατηγορία. Έτσι για παράδειγμα έχουμε την κατηγορία των ομάδων με τους αντίστοιχους μορφισμούς ομάδων, την κατηγορία των διανυσματικών χώρων με τους αντίστοιχους μορφισμούς τους, τις γραμμικές απεικονίσεις, και ούτω καθεξής.
Στην πραγματικότητα η θεωρία κατηγοριών (τουλάχιστον σε πρώτη φάση) δε λαμβάνει υπ’ όψη της το γεγονός ότι σε κάθε αντικείμενο βρίσκεται υποκείμενο ένα σύνολο. Αντιθέτως μια κατηγορία ονομάζεται μια συλλογή από αντικείμενα μαζί με κάποια “βελάκια” μεταξύ τους, ονομαζόμενα μορφισμοί, έτσι ώστε κάθε μορφισμός να έχει ένα “πεδίο ορισμού” και ένα “πεδίο τιμών” (απλώς δύο αντικείμενα της συλλογής μας) και να έχει ορισθεί μια πράξη σύνθεσης μορφισμών, έτσι ώστε ένας μορφισμός από το Α στο Β και ένας από το Β στο Γ να μας δίνουν ένα μορφισμό από το Α στο Γ, ενώ για κάθε αντικείμενο Α της κατηγορίας υπάρχει ένας μορφισμός 1Α από το Α στο Α, ο οποίος συντιθέμενος με οποιονδήποτε άλλο μορφισμό β μας δίνει τον ίδιο το β και λέγεται ταυτοτικός. Αυτά είναι τα μόνα εφόδια που έχει (αρχικά) κανείς.
Κατόπιν η θεωρία αρχίζει να πλουτίζεται, καθώς προσπαθεί κανείς να βάλει επιπλέον ιδιότητες στους μορφισμούς. Το πρόβλημα είναι ότι η ιδιότητα αυτή δεν θα πρέπει να έχει να κάνει με κάποια στοιχεία που θα “ανήκουν” στο αντικείμενο, αφού το αντικείμενο δεν είναι απαραίτητα σύνολο. Εύλογα λοιπόν αναρωτιέται κανείς, πώς θα μπορούσε να εκφράσει σε αυτό το πλαίσιο έναν ορισμό όπως της 1-1 απεικόνισης μεταξύ συνόλων. Το εντυπωσιακό είναι πως μπορεί (!) και μάλιστα με δύο (!!) διαφορετικούς τρόπους.
Αυτό οφείλεται στην ακόλουθη πρόταση που αποδεικνύεται στη θεωρία συνόλων:
Έστω f:X® Y συνάρτηση μεταξύ των συνόλων Χ και Υ. Τότε τα ακόλουθα είναι ισοδύναμα:
α)Η f είναι 1-1
β)Υπάρχει μία g:Y® X με gf=1X (Δηλαδή η f έχει αριστερό αντίστροφο)
γ)Για κάθε ζεύγος συναρτήσεων α,β:Υ® Ζ (Ζ τυχαίο) με αff, έχουμε ότι α=β (Δηλαδή η f είναι όπως λέμε από δεξιά διαγράψιμη)
Παρατηρεί κανείς άμεσα ότι στις ισοδυναμίες β και γ εμφανίζεται μόνο η έννοια του μορφισμού συνόλων (της απλής απεικόνισης). Έτσι οι δύο αυτές προτάσεις μπορούν να χρησιμοποιηθούν στο πλαίσιο της θεωρίας Κατηγοριών. Έτσι σε μια κατηγορία ένας μορφισμός λέγεται μονομορφισμός, αν είναι από δεξιά διαγράψιμος, ενώ λέγεται διασπώμενος μονομορφισμός, αν έχει αριστερό αντίστροφο. Οι δύο αυτοί ορισμοί δεν είναι εν γένει ισοδύναμοι, αν και στην κατηγορία των συνόλων συμπίπτουν. (Στην κατηγορία των ομάδων διασπώμενοι μονομορφιμοί είναι αυτοί που όταν το πεδίο ορισμού τους θεωρηθεί σαν υποομάδα του πεδίου τιμών τους, αυτή είναι κανονική, η ισοδύναμα πυρήνας ενός μορφισμού)
Με παρόμοιο τρόπο μεταφέρονται οι έννοιες της ένωσης και τομής συνόλων, της εικόνας και της αντίστροφης εικόνας μιας απεικόνισης, του πυρήνα ενός μονομορφισμού, του καρτεσιανού γινομένου συνόλων καθώς και του ευθέως αθροίσματος ομάδων ή του καρτεσιανού γινομένου διανυσματικών χώρων. Παράλληλα όμως δημιουργούνται και καινούργιοι, συγκεκριμένα οι δυϊκοί τους. Ας δούμε τι σημαίνει αυτό.
Αν ξεκινήσουμε από μια κατηγορία, μπορούμε να φτιάξουμε μια καινούργια κατηγορία με το ακόλουθο “τρικ”: Η καινούργια κατηγορία έχει τα ίδια αντικείμενα με την αρχική, μόνο που τώρα οι μορφισμοί έχουν αλλάξει φορά. Δηλαδή αν στην αρχική κατηγορία υπήρχε ένας μορφισμός α:Α® Β, τότε η καινούργια κατηγορία έχει ένα μορφισμό α:Β® Α. Η πράξη της σύνθεσης ρυθμίζεται ανάλογα. Αυτή η κατηγορία λέγεται δυϊκή της πρώτης. Με τον τρόπο αυτό μπορούμε από κάθε ορισμό σε μια κατηγορία να φτιάξουμε ένα καινούργιο ορισμό, αντιστρέφοντας στην ουσία τη φορά των μορφισμών-βελών (Θεωρώντας δηλαδή τον αντίστοιχο ορισμό στην δυϊκή της κατηγορίας). Έτσι για παράδειγμα ένας μορφισμός λέγεται επιμορφισμός, αν είναι μονομορφισμός στη δυϊκή κατηγορία, δηλαδή αν είναι από δεξιά διαγράψιμος στην δυϊκή κατηγορία, ή ισοδύναμα (από τον ορισμό της σύνθεσης στη δυϊκή κατηγορία) αν είναι από αριστερά διαγράψιμος στην αρχική κατηγορία. Έτσι για κάθε έννοια της θεωρίας κατηγοριών υπάρχει η δυϊκή της, και κάθε πρόταση έχει μια αντίστοιχη δυϊκή, που στην ουσία προκύπτουν αν αντιστρέψουμε τη φορά των βελών. Έτσι κάθε απόδειξη μιας πρότασης από κάποιες υποθέσεις μας δίνει μια απόδειξη της δυϊκής της πρότασης από τις δυϊκές των υποθέσεων. Στην ουσία κάθε φορά αποδεικνύουμε δύο προτάσεις μαζί (!).
Μέχρι τώρα είδαμε τα αντικείμενα της θεωρίας Κατηγοριών, τις κατηγορίες. Όμως η θεωρία Κατηγοριών είναι μια μαθηματική θεωρία, άρα εκτός από αντικείμενα έχει και μορφισμούς μεταξύ τους, δηλαδή απεικονίσεις μεταξύ κατηγοριών που σέβονται τη δομή των κατηγοριών. Πιο συγκεκριμένα ένας συναρτητής μεταξύ των κατηγοριών Α και Β είναι μία απεικόνιση που αντιστοιχεί σε κάθε αντικείμενο της Α ένα αντικείμενο της Β και σε κάθε μορφισμό μεταξύ δύο αντικειμένων της Α έναν μορφισμό μεταξύ των αντίστοιχων αντικειμένων της Β. Η αντιστοίχιση γίνεται με τέτοιο τρόπο ώστε η εικόνα της σύνθεσης δύο μορφισμών να είναι η σύνθεση των εικόνων τους και η εικόνα του ταυτοτικού μορφισμού ενός αντικειμένου να είναι ο ταυτοτικός της εικόνας του αντικειμένου.
Σημαντικότατο παράδειγμα συναρτητών είναι οι λεγόμενοι “ξεχασιάρηδες” συναρτητές, που “ξεχνάνε” την επιπλέον δομή κάποιων συνόλων. Έτσι για παράδειγμα υπάρχει ένας συναρτητής που αντιστοιχεί σε κάθε διανυσματικό χώρο (ή τοπολογικό χώρο κλπ) το υποκείμενο σύνολό του (“ξεχνώντας” την επιπλέον δομή διανυσματικού χώρου που έχειτο σύνολο) και σε κάθε μορφισμό ομάδων την αντίστοιχη απεικόνιση μεταξύ των υποκείμενων συνόλων. Μια άλλη κλάση συναρτητών είναι οι λεγόμενοι συναρτητές ομολογίας, που (για κάθε φυσικό ν) σε κάθε τοπολογικό χώρο αντιστοιχούν τη λεγόμενη ν-οστή ομάδα ομολογίας του χώρου και σε κάθε συνεχή απεικόνιση μεταξύ δύο τοπολογικών χώρων έναν επαγόμενο μορφισμό μεταξύ των αντίστοιχων ομάδων. Με τη βοήθεια αυτών των συναρτητών αποδεικνύεται το περίφημο θεώρημα του Brouwer, που λέει ότι κάθε συνεχής συνάρτηση f από τη σφαίρα Dn={x Rn ||x||<1ή||x||=1} στον εαυτό της έχει τουλάχιστον ένα σταθερό σημείο, δηλαδή υπάρχει x με f(x)=x.
Τι σημασία έχουν λοιπόν αυτοί οι συναρτητές; Καταρχάς μας επιτρέπουν να μεταφέρουμε προβλήματα μιας θεωρίας σε προβλήματα μιας άλλης, όπου ελπίζουμε ότι θα είναι πιο εύκολα στη λύση τους, μας προσφέρουν δηλαδή μια σύνδεση μεταξύ των μαθηματικών θεωριών. Έτσι για παράδειγμα ας υποθέσουμε ότι έχουμε δύο τοπολογικούς χώρους Χ και Υ και θέλουμε να αποφανθούμε αν είναι ομοιομορφικοί, δηλαδή ισόμορφοι στην κατηγορία των τοπολογικών χώρων. Ας υποθέσουμε ακόμα ότι έχουμε τον “ξεχασιάρη” συναρτητή, έστω U, από την κατηγορία των τοπολογικών χώρων στην κατηγορία των συνόλων. Τότε, αν οι Χ και Υ είναι ομοιομορφικοί μέσω ενός α:Χ® Υ, τότε ο U(α):U(X)® U(Y) είναι ισομορφισμός στην κατηγορία των συνόλων, δηλαδή τα υποκείμενα σύνολα των Χ και Υ είναι ισοπληθικά. Οπότε αν τα υποκείμενα σύνολα των Χ και Υ δεν είναι ισοπληθικά, προκύπτει ότι οι χώροι Χ και Υ δεν είναι ομοιομορφικοί. Βέβαια δεν χρειαζόμαστε τη Θεωρία Κατηγοριών για να μας το πει αυτό, όμως η Θεωρία Κατηγοριών μας επιτρέπει να δούμε το συμπέρασμα σε ένα γενικότερο πλαίσιο, ότι δηλαδή αν οι εικόνες μεταξύ ενός συναρτητή δύο αντικειμένων είναι μη ισόμορφες, τότε και τα αντικείμενα είναι μη ισόμορφα. Αν οι εικόνες είναι ισόμορφες, δεν μπορούμε εν γένει να πούμε τίποτα.
Χρησιμοποιώντας τους συναρτητές ομολογίας που αναφέραμε παραπάνω, μπορούμε να πούμε πολύ περισσότερα πράγματα για το αν δύο τοπολογικοί χώροι είναι ομοιομορφικοί. Έτσι αν δύο τοπολογικοί χώροι είναι ομοιομορφικοί, τότε οι ν-οστές ομάδες ομολογίας τους είναι ισόμορφες (για κάθε ν). Υπολογίζοντας αυτές τις ομάδες μπορούμε συχνά να αποφανθούμε αν δύο χώροι είναι ομοιομορφικοί. Έτσι για παράδειγμα μπορούμε να αποδείξουμε ότι R Rnαν και μόνο αν m=n (όπου Rm ο συνήθης m-διάστατος ευκλείδειος χώρος). Και πάλι θα μπορούσαμε να αποδείξουμε το παραπάνω θεώρημα χωρίς ρητή αναφορά σε κατηγορίες και συναρτητές, αλλά αυτό θα ήταν το ίδιο σαν να χρησιμοποιούσαμε στην απόδειξη ενός θεωρήματος τις γραμμικές πράξεις που τυγχάνει να έχει ένα σύνολο, χωρίς να αναφερόμαστε ρητώς στο γεγονός ότι το σύνολο έχει τη δομή διανυσματικού χώρου. Δεν είναι πιο κομψό (ίσως πιο σωστό, αν μπορούσαμε να πούμε ότι κάτι είναι σωστό ή όχι) να αναφέρουμε ότι το σύνολο υπό μελέτη είναι ένας διανυσματικός χώρος;
Ενώ λοιπόν, ενώ μπορεί κανείς να ισχυριστεί ότι η Θεωρία Κατηγοριών είναι απλώς μια γλώσσα και μπορούμε να κάνουμε Μαθηματικά χωρίς αυτήν, εντούτοις τα πράγματα δεν είναι έτσι. Υπάρχουν θεωρήματα τα οποία ισχύουν στη Θεωρία Κατηγοριών και μας βοηθούν στην καθημερινή ενασχόλησή μας με τα Μαθηματικά. Ας κάνουμε έναν παραλληλισμό. Ας υποθέσουμε ότι δεν έχουμε δημιουργήσει τη θεωρία ομάδων. Ας υποθέσουμε ακόμα ότι στη δουλειά μας συναντάμε ένα σύνολο στο οποίο έχουμε μια πράξη που ικανοποιεί τα αξιώματα μιας ομάδας. Αν πάρουμε ένα υποσύνολό του που είναι κλειστό ως προς την πράξη, μπορούμε να αποδείξουμε ότι η τάξη του (το πλήθος των στοιχείων του) διαιρεί την τάξη του δεδομένου συνόλου (θυμηθείτε ότι δεν έχουμε το θεώρημα του Lagrange, αφού δεν έχουμε θεωρία ομάδων). Αν πάρουμε ένα άλλο υποσύνολο του αρχικού, μπορούμε πάλι να αποδείξουμε ότι η τάξη του διαιρεί την τάξη του αρχικού, είναι όμως κάτι το οποίο πρέπει να αποδείξουμε. Μπορούμε να πούμε ότι αποδεικνύεται παρόμοια, όμως αυτό είναι το ίδιο με το να ορίσουμε ότι λέμε ένα σύνολο ομάδα, αν έχει μια πράξη που ικανοποιεί τα γνωστά αξιώματα της ομάδας, να δείξουμε τι ιδιότητες έχει μια τυχούσα ομάδα, και μετά απλώς να παρατηρήσουμε ότι τα άλλα σύνολα που προκύπτουν στη δουλειά μας είναι ομάδες, να θεμελιώσουμε με λίγα λόγια τη Θεωρία Ομάδων. Το ίδιο συμβαίνει και με τη Θεωρία Κατηγοριών.
Η Θεωρία Κατηγοριών εμφανίζεται πλέον σε πάρα πολλές περιπτώσεις, ειδικά όταν προσπαθούμε να συνδέσουμε διάφορους κλάδους των Μαθηματικών. Είναι μέρος της καθημερινής μας πρακτικής (στην πραγματικότητα τα περισσότερα πράγματα που έχουμε ορίσει μπορούν να εκφραστούν με τη γλώσσα της Θεωρίας Κατηγοριών, απλώς δεν το γνωρίζουμε ή δεν μας ενδιαφέρει). Μας βοηθάει να λύσουμε κάποια προβλήματα, ή να τα δούμε σε άλλο πλαίσιο, αλλά από την άλλη έχει και αυτή τα προβλήματά της, όπως για παράδειγμα πότε δύο κατηγορίες είναι κατ’ ουσία ίδιες (όχι έναν ορισμό, αλλά σε συγκεκριμένα παραδείγματα), ή πότε μια κατηγορία μπορεί να θεωρηθεί ως κατηγορία που τα αντικείμενά της είναι σύνολα (με κάποια ενδεχομένως δομή). Η απάντηση σε αυτά τα ερωτήματα, από ότι ξέρω τουλάχιστον, είναι πολύ μακριά.
Σκιαδάς Χαρίλαος
Βιβλιογραφία:
Νασόπουλος: “Στοιχεία Θεωρίας Κατηγοριών”, Σημειώσεις Παραδόσεων, Πανεπιστήμιο Αθηνών, 1986
Mitchell: “Theory of Categories” Academic Press, 1965